1

1

1

1

2

1

Mark schemes

	4	
IJ	7	

(a) (test) add barium chloride (solution)

ignore (hydrochloric / nitric / sulfuric) acid

allow add barium nitrate (solution)

(result) white precipitate

MP2 is dependent upon MP1 being awarded

- (b) the yield is smaller at higher temperatures because the reaction is exothermic
- (c) there are more moles / molecules (of gas) on the left allow converse ignore particles

(so the position of) equilibrium shifts to the right

- (d) any **two** from:
 - the yield is already high
 - more energy required
 - risk of explosion is increased
 - higher income from increased yield is outweighed by the extra expenditure
 - increased cost of safety precautions
 allow requires stronger vessels
 allow requires thicker walls

(e) vanadium (V)

[8]

1

1

1

1

1

1

1

1

Q2.

(a) (mass of water in
$$4.68 \text{ g} = 4.68 - 2.99$$
) = 1.69 (g)

(mass of water in 11.7 g =) $\frac{11.7}{4.68}$ × 1.69

allow correct use of an incorrectly determined mass of water in 4.68 g

= 4.23 (g) allow 4.2 / 4.225 (g)

alternative approach:

(mass of anhydrous compound =

$$\frac{11.7}{4.68} \times 2.99$$

= 7.475 (g) (1)

(mass of water =) 11.7 - 7.475 (1)

allow correct use of an incorrectly determined mass of anhydrous compound

(b) (energy =) $\frac{15.0}{2.99} \times 1.47$

= 7.37 (kJ)

allow 7.37458194 correctly rounded to at least 2
significant figures

(c) shifts to the left

- (d) the mixture is a lighter shade of brown
- (e) no effect (on equilibrium position)

 allow (equilibrium position) stays the same

(because) there are equal numbers of (gas) moles / molecules on each side (of the equation)

no effect (on equilibrium position) allow (equilibrium position) stays the same	
	1
add more hydrochloric acid	1
(because the) forward and reverse reactions are taking place at (exactly) the same rate	2
	allow (equilibrium position) stays the same add more hydrochloric acid (because the) forward and reverse reactions are taking place at (exactly) the

ignore references to closed systems allow for **1** mark (because) the reactions are taking place at (exactly) the same rate

[13]

Q3.		
(a)	(nitrogen) air	
	allow atmosphere	1
	(hydrogon) natural gas	
	(hydrogen) natural gas allow methane	
	allow water / steam	
		1
(b)	there is only one product	
		1
(c)	(mixture is) cooled	1
		1
	(so that only) ammonia liquefies	
	allow (so that only) ammonia condenses	1
(4)	scale labelled at 100, 200, 300 and 400 (atm)	
(d)	allow scale labelled at 50, 150, 250 and 350 (atm)	
	anon soule labolica at 50, 150, 250 and 500 (auti)	1
	all five points plotted correctly	
	allow a tolerance of ± ½ a small square	
	allow 1 mark for three / four points plotted correctly	2
		2
	line of best fit	1
(0)	View with Figure 2	
(e)	View with Figure 2	
	extrapolation to 500 atmospheres	1
		1
	percentage value at 500 atmospheres	
	allow a tolerance of ± ½ a small square	1
(f)	Level 3: Relevant points (reasons/causes) are identified, given in detail	
(.)	and logically linked to form a clear account.	
		5-6
	Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	
	attempts at logical linking. The resulting account is not fully clear.	3-4
	Level 1: Points are identified and stated simply, but their relevance is	
	not clear and there is no attempt at logical linking.	
		1–2
	No relevant content	Δ
		0

Indicative content

rate

- higher temperature gives higher rate because of more frequent collisions
- higher temperature gives higher rate because more particles have the activation energy
- higher pressure gives higher rate because of more frequent collisions
- use of catalyst gives higher rate because the activation energy is lowered

equilibrium

- higher temperature shifts the position of equilibrium to the left because reaction is exothermic
- higher pressure shifts the position of equilibrium to the right because more molecules on left-hand side
- use of catalyst has no effect on the position of equilibrium

other factors

- higher temperature (than 450°C) uses more energy so increases costs
- higher pressure (than 200 atmospheres) uses more energy so increases costs
- higher pressure (than 200 atmospheres) requires stronger reaction vessels so increases costs
- use of a catalyst reduces energy costs

compromise

- the temperature chosen is a compromise between rate of reaction and position of equilibrium
- the temperature chosen is a compromise between rate and cost
- the pressure chosen is a compromise between yield / rate and cost